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1 Defining the problem

The challenge posted by QuEra was to explore a special case of the “maximal independent set” problem.
The original formulation of the problem includes a graph G = (V, ) and the task to find a maximal
subset M € V of vertices, such that Vz;,z; € M : (z;,z;) ¢ €. We consider the special case in
which all vertices are placed on a regular square lattice spacing a and size N x N. Furthermore, we
remove 20% of the vertices from the lattice (selected at random). It has been demonstrated recently
that if the edges connect nearest and next-nearest neighbors on the lattice, the problem of finding the
maximal independent set (MIS) can be efficiently tackled by classical computational methods [Andrist
et al., 2023]. Here we consider an interaction range that spans three lattice sites a, and finding the
MIS is, therefore, arguably “harder” than in the initial problem. The task is to approach the problem
by simulating it with trapped neutral atoms.

2 Theory

2.1 Overview

We consider the neutral atoms to be sufficiently described by a two level system of a ground state |g;)
and an excited state (Rydberg state) |r;) (the atoms are labeled by indices 7). Transitions between
the ground state and the Rydberg state can be driven optically with a laser. Choosing appropri-
ate values of frequency, phase, and pulse duration leads to an effective absorption/emission term
> % [€®®) |g;) (ri] + 7" |r;) (g]] in the Hamiltonian. By detuning the frequency of the driving
laser by A(t), one can control the energy gain/cost from adding excited atoms —A(t) >, n;, where
the on-site Rydberg density operator n; = |r;) (r;| has been defined. What makes the neutral atoms
a unique platform for quantum experiments is the dipole-dipole interaction between excited atoms.
This is captured by the term ZKJ. Vijnin;, where Vj; = leﬁ and Cj is a constant that depends
on the choice of neutral atom. The Aquila quantum computer uses 8’Rb atoms with a value of
Cs = 862690 x 2 MHz us®. The Rydberg interaction has a significant impact on the excitability of
atoms close to already excited atoms. Due to the interaction, the energy cost of exciting a neighboring
atom is lifted, and the drive is thus off-resonance. This effect is called the Rydberg blockade. The
total Hamiltonian can be summarized to be
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with A = 1.

2.2 Rb/a

An important aspect to take into account is the Rydberg blockade mechanism. Effectively, when two
or more atoms are within a close enough proximity to each other (within the Rydberg blockage radius
Ry), there is a distinctive suppression of the chance of a double excitation (whereby both atoms in the
proximity are excited). The interaction can be expressed as a Van der Waals interaction:
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In this equation, the relationship between €2, the Rabi frequency, and A, the detuning factor, is of
crucial importance when optimizing for a large Rydberg radius. By treating the Rabi frequency as
negligible, the Rydberg radius equation was simplified to a single parameter, the detuning factor. We
require a Rydberg radius to be ideally around the geometric mean of the distance across three atom
separations and the closest atom outside of the three atom separation radius. Using the minimal
separation distance of the Aquila system as a = 4um, the final detuning parameter was estimated
using the following equation:

A~ ——2—— =~ 1.55 MHz. (3)

From this point, we began to explore alterations to the waveform, such that the final detuning energy
was steadily optimized towards. The linear waveform was chosen as an ideal baseline to begin the
simulation in Julia. Through simulation and experimentation on quantum hardware, we concluded
that it is plausible that the conditions of Aquila are capable of fitting R,/a = 3, as the calculated
A value is within the possible range of resolution of the hardware (-20 to 20 x 27 MHz). This
is particularly interesting because the annealing hardness spikes significantly, peaking at 3, offering
potential for quantum advantage.

3 Programming

3.1 Simulations with Julia

We began our programming process by simulating the MIS problem classically in Julia on small (4x4
and 5x5) graphs. Using Julia gave us a sense of how to model the problem and we were then able to
begin optimizing our delta graph from the original linear shape to a shape better suited for finding the
MIS more accurately. The advantage of using Julia was the ability to check our MIS simulation results
using Generic Tensor Networks, giving us confidence with our optimizations before moving onto the
actual quantum hardware.

3.2 Optimization
3.2.1 Nelder-Mead Optimization

We spent significant time considering how to optimize the time dependence of the detuning A(t) from
the initial linear graph varying from —Ap.x t0 Apax. We used the negative Rydberg density sum in
conjunction with Julia’s Optim optimizer to try to maximize the density. At first, we encountered the
issue of overfitting with unusual and highly variable graph shapes, which we tried to resolve by using
the average of an array of optimizing factors for 20 different 5x5 lattice graphs instead of individual
optimization, which we found worked more consistently for classical simulations of lattice graphs of
arbitrary classically computable size. For a more sophisticated approach, it would be necessary to
optimize the time dependence of the parameters with respect to various lattice topologies, but there
is only so much that you can do during a 24-hour Hackathon.

3.2.2 Bayesian Optimization

After running into an overfitting error in the implementation of the Nelder-Mead optimization scheme,
the Bayesian optimization method became a worthy alternative to explore. A particular benefit of
Bayesian Optimization is the fact it is suited towards a black box problem. The particular interaction
between atoms and the detuning towards excited states is nearly pure chaos. To be able to determine
the fitting waveform for delta to achieve a high fidelity for the MIS requires some reiterative learning
model. Hence, Bayesian Optimization [Finzgar et al.].

The process in general is relatively simple. It begins with setting up initial parameters, bounded
within some interval. An optimizer with the given parameter sets up a surrogate model of the black
box function. Now, the initial system is ready for its initial iteration. A small set amount of shots is
sent with the surrogate model of the delta function to retrieve the initial set of data points. Additional
points are chosen by the upper confidence bound which is determined by the sum of the mean and
the product of the standard deviation with a decay rate. After each iteration, a Gaussian process,
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Figure 1: Piecewise Linear Graph for A/27 (MHz) vs. time (us)

through common waveforms such as Bang-Bang, cubic, linear, and Fourier, determines more points so
the uncertainty and decay decreases while the form, hopefully, tends toward the target function.

While the premise of the algorithm is accessible to learn, the actual implementation was a tough
challenge. Having been exposed to Bayesian Optimization for the first time, an application of the
process within several hours would have been a miracle. Nevertheless, work began in Python to
implement as much of the algorithm as possible within the time constraint. In hindsight, Julia’s
platform and capabilities with Blogade would have been a faster and easier to learn on the fly with.
Still progress was made but a full implementation is still out of reach within such a short time frame.
A basic implementation of the several of the schedule parametrizations was completed and work on
the parameters had begun. To further realize this algorithm, the parametrization would need to be
refined, the initial parameters would have to be chosen and possibly generalized depending on the
matrix size and shape. Additionally, the upper confidence bound would have to be implemented so
that the reiterative approach could work. While the Bayesian Optimization algorithm could not be
tested for MIS during this Hackathon, it’s results in the included reference provides great confidence
in its capabilities and should be investigated further to fully test it’s ability to create these blackbox
waveforms.

(a) (b) (c)
Bayesian Optimization Evaluation QA Schedules
== f(@) — E[f(ﬁ)] ® Observ. Quantum hardware Ly - Real ™ Parameters
y == Cubic

2  J

= Fourier

Figure of Merit

Numerical simulations

LGOI
1014 111

= = Bang-bang

Acq. fn.

Parameters 8 Briext . - 0 Time ¢ ty

Figure 2: Overall illustration of the Bayesian Optimization Process [Finzgar et al.]
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3.2.3 Other optimization techniques

A differential evolution algorithm using the BlackBoxOptim library in Julia as well as a reinforcement
learning algorithm were written to help optimize the sum of the on-site Rydberg densities. These
algorithms were not as successful as the classical algorithms in terms of optimization, and tended
heavily toward corner solutions with parameters [-1, -1, -1, -1, 1]; this would lead to a rather steep and
inaccurate piecewise linear function.

3.3 Quantum Hardware Results

Running the routine with parameters generated from the Nelder-Mead optimization on actual quantum
hardware was of course the highlight of the Hackathon. The Aquila quantum computer allows for up
to 100 runs within a cycle. In order to benchmark the results, we determined the MIS with the help
of a classical Generic Tensor Network. The results are summarized in the following table:

Graph Size ‘ MIS Accuracy ‘ Excited State Count Accuracy ‘ HP

x4 21% 37% 0.54
5x5 2% 44% 3.0 (4)
9x9 0% 8% 3.44

10x10 0% 1% —

The second column specifies the percentage of correctly determined MIS, and the third column the
percentage of states that have exactly the same amount of excited states as an MIS, but might violate
the “independence” condition.

3.4 Annealing Hardness Parameters

In combinatorial optimization problems, the difficulty of both classical and quantum annealing pro-
cesses are quantized by annealing hardness parameters which reflect the annealing schedule, hardware
specifications, and noise level of the system. As a result of the complexity of these interrelated con-
ditions, calculating the hardness parameter in a generalizable way requires repeated experimentation
via a tropical tensor network algorithm. In the process of building our tensor network algorithm to
optimize for a possible hardness parameter, we realize that the time complexity would quickly scale out
of control for larger lattices. This scaling issue was the product of the annealing hardness parameter
calculation that we chose to match the equation below.

~ Nmis)—1
|MIS|- Njnrs
In this equation, IV represents the degeneracy of the independent set configurations that have a size

that is less than or equal to the optimal number of maximum independent sets. We have calculated
the annealing hardness for the 4 x 4 and 5 x 5 lattice and listed the results in the above table.

HP

4 Business

4.1 Biological Applications of MIS

There are a variety of biologically relevant applications of the maximal independent set problem.
Chiefly, MIS finds great usage in computational biology, molecular simulations and drug design. In
particular, MIS is integral to the reconnaissance metadynamics (RMD) technique for protein-ligand
interaction analysis [S6derhjelm et al., 2012]. It allowed for analysis of protein structure by simulating
each alpha carbon in any peptide chain as a vertex of a certain graph. In doing so, MIS allowed for the
simulated separation of protein-ligand interactions such that there were a maximum number of surface
interactions without interfering with the overall structure of the protein itself. With the introduction
and adoption of new technologies including DeepMind’s structure prediction software AlphaFold, the
use of MIS remains a significant factor in the study of protein structure as well as protein-ligand and
protein-protein interactions [Ahn et al., 2020].

A similarly significant application of MIS to biology includes its use in drug discovery. In partic-
ular, modern early drug discovery techniques heavily emphasize the principle of diversity selection,
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to prevent a large number of potential molecules having similar domains (and thus redundant func-
tionalities) [Meinl et al., 2011]. Though most diversity selection techniques incorporate the static
structures of the molecules, this is an NP-hard problem. Meinl et al. pioneered a technique called
Maximum-Score Diversity Selection, which additionally uses MIS to analyze the molecular dynamics of
different molecules to determine if they have similar pharmacological interactions (and thus pre-screen
them before the high-thoroughput screening universally conducted in drug discovery labs). Similar
techniques have since become prevalent in computational drug design, with MIS and graph theory as
a whole playing a critical role in unsupervised learning for pharmacophore discovery [Xu et al., 2023]
Training times for such algorithms were as little as 10 to 30 seconds.

With specific regard to the use of MIS in drug discovery, it is important to note that some phar-
macophores have a mandatory minimum diversity selection score; in order to achieve a score such as
this, there may be a constraint on how far “happy” vertices have to be from each other [von Korff
and Sander, 2022; Ghirardi and Salassa, 2022]. Indeed, the particular restriction Rp/a = 3 would be
crucial in small molecules (molecular weight < 1 kilodalton) as opposed to larger molecules such as
biologics; this is because two hypersimilar functional domains would not be as effective when directly
next to each other, but may be able to exert greater pharmacological impact if they are farther away.
This is especially seen with Proteolysis Targeting Chimeras (PROTACSs), which are small molecules
with heterodomains that are attached to each other with an ubiquitin ligase [Békés et al., 2022]. With
a value of Rp/a = 3, the radius is not too large such that there is only one domain on the molecule,
but also not too small such that there are extensively similar domains adjacent to each other, which
would be heavily limiting on the efficiency of the molecule to degrade unwanted proteins in the body.
The particular PROTACs designed by one of the authors of the aforementioned paper, Dr. Craig
Crews, successfully launched Proteolix in 2003, which was acquired by Onyx Pharmaceuticals for $851
million, which itself was later acquired by Amgen.

4.2 Logistical Application of MIS

A further logistical application of MIS in solving real-world problems includes the use of Hopfield neural
networks, especially in the context of wireless sensor networks [Serpen and Li, 2011]. In particular,
Hopfield neural networks involve self-referential feedforward propagation and can simulate processes
such as human memory; the use of parallelism in a neural net combined with the structure of an MIS can
allow for extremely quick computation. Moreover, combined with the power of microelectronic sensor
nodes, the technology allows for quick sensing as well as solid learning and information processing
capabilities.

4.3 Vertices necessary for real-life problems

A particularly interesting application of MIS and its relevance to vertex modeling for real-life problems
further concerns protein structure modeling [Séderhjelm et al., 2012]. As an example, the use of MIS
to model the alpha carbons of trypsin resulted in a 223-vertex graph, which could easily operate on
a 256-qubit quantum computer or any other quantum computer with qubits on the order of a few
hundred, such as QuEra’s Aquila [QuEra]. Other applications of MIS could include far smaller graphs
to model local systems of “happy” vertices such as the distribution of pencils in an elementary school
classroom. Indeed, graphs like these could easily have as few as 10 to 15 vertices and are perhaps
simulatable by the algorithms that our team worked on this weekend.

5 Conclusion

We found this challenge over the past 24 hours to be very interesting and certainly worthy of further
investigation. If we had more time, we would try to implement some of the other optimization tech-
niques we looked into as described above but did not have time to fully implement, as well as further
investigating the values of annealing hardness for different size graphs. In addition, we would have
spent more time looking into more values of Rp/a smaller than 3 and investigating their viability with
Aquila. We deeply thank QuEra for giving us the opportunity to work on this interesting and novel
problem using their state of the art quantum hardware.
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