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We examine the viability of two quantum-inspired classical algorithms—one for linear algebra
and recommendation systems and the other for Grover search—for solving computational problems
more efficiently than the current optimal classical algorithms. The argument in favor primarily
emphasizes the fact that these algorithms can apply to a very wide set of problems relatively
efficiently. Experimental results indicate that quantum-inspired algorithms can be highly accurate
and efficient in solving low-rank linear systems of equations. Certain optimal search algorithms
where Grover’s algorithm functions as a subroutine may be promising applications for quantum-
inspired Grover’s algorithm. The argument against underscores the costly polynomial scaling of
the quantum-inspired algorithms for linear algebra and recommendation systems and the general
tensor network construction inherent to quantum-inspired Grover’s algorithm unlikely to be more
optimal than a specific construction per problem. When we presented our research to our quantum
computing class, their opinion was split but more students ultimately voted against the proposition

than in favor.

I. INTRODUCTION

Quantum-inspired classical algorithms have served as a
valuable tool for benchmarking the performance of quan-
tum computers in reality. These algorithms are generally
a variation of a quantum algorithm particularly suitable
for execution on a classical computer.

However, some of these algorithms present novel and
potentially competitive approaches compared to other
classical algorithms, separate from the quantum algo-
rithm by which they were inspired. We present our inves-
tigation of the viability of these algorithms in their own
right to argue if one of them could become the primary
algorithm for some industrial use case.

This proposition is worthwhile to explore because, if
it is true, it gives us a reason to study quantum compu-
tation completely independently of the viability of prac-
tically realizable and scalable quantum hardware. Since
large-scale quantum hardware is not yet viable, but the
field of research relating to quantum-inspired classical al-
gorithms is active and growing, it is an interesting time
to examine this proposition.

We will establish our argument through the discussion
of two algorithms: one that can solve linear systems of
equations and compute preferences in recommendation
systems [1], and one that can perform a search of length
n bitstrings to find one or more marked states [2].

II. TECHNICAL BACKGROUND
A. Quantum-inspired singular value decomposition

We begin by discussing quantum-inspired algorithms
for linear systems of equations and recommendation sys-
tems, as described in Ref. [1].

Given an m X n matrix A € R™*" with singular value

decomposition (SVD)

k
A= ZO’[UJ(Z)’U(Z)T, (1)
=1

the goal is to sample entries of the n-dimensional vector

k
T = Z Aev®, (2)
=1

with respect to the length-square probability distribution
p.(i) = 22/||z||%. For linear systems of equations, we set
1
A= — (v, ATp), (3)
9%
so that Ax = b. For recommendation systems, we con-
sider A to be the preference matrix whose entries Aj;;
denote the preference (or alignment) of item ¢ to item j
and set

Ao = (AT, 00), (4)

where A; is the i-th row of A.

We first compute the approximate singular values oy
and approximate right singular vectors 9© of A using
the Frieze-Kannan-Vempala (FKV) algorithm [3], as out-
lined in Figure 1. This algorithm works by constructing
a smaller matrix C' € R"*¢ by sampling r rows and ¢
columns of A, where r and ¢ are smaller but otherwise
independent of m and n, respectively.

Specifically, we compute the Frobenius norm of A, de-
fined as

1Al

D> 1A, (5)
i=1 j=1

as well as the norm of A; to construct length-square
probability distributions p(i) = || 4;||?/||A||% and ¢;(j) =
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FIG. 1. Schematic representation of the FKV algorithm, as
constructed in Ref. [1]. The singular values of C approximate
those of A, while the singular vectors of C' can be used to
reconstruct approximations to the singular vectors of A.

|Ai;1%/1|A4; ). We sample r row indices from the row dis-
tribution p(i), and then select an index s € {1,2,...,r}
uniformly at random to sample a column index j from
the column distribution g;_(j). We renormalize the rows
and columns respectively after sampling them.

The characteristic that makes this algorithm
“quantum-inspired” is the way we store our data:
we do not directly compute the vectors, but rather query
their entries in accordance with a length-square distri-
bution, a process reminiscent of quantum measurement.

Specifically, consider the fact that the coefficients A in
x will always be inner products, so we can write them
as A = (y,z) = >, y;2; for appropriate vectors y, z
as defined for the specific application. We then define
the random variable  that takes values x; = y;2;/py (%),
where the indices i are sampled from the length-square
distribution of one of the vectors (say, y) giving p, (i) =
y2/|lyl|*>. The expected value of this random variable is

=3

=(y,2) =X, (6)

so we can draw N samples X( ) X(z)’ o, x™) and com-
pute the unbiased estimator A = ~ Z X9 =

We now have approximate singular Values e and ap-
proximate coefficients A¢. Using the left singular vectors
w® of C, we can implicitly calculate the approximate
solution vector & = 25:1 Av® = RTw, where

(7)

gz‘g/z

sy 2

(=1

We perform rejection sampling [4] to sample from these
vectors using only query access to the entries of w and
R. The idea is that given sampling access to some dis-
tribution P, rejection sampling allows us to sample from
a “close” distribution Q by pulling a sample s from P,

computing ry = m%(s)
outputting s with probability r, or restarting otherwise.

We choose P to be the distribution formed by first
sampling a row index ¢ uniformly at random and then
sampling a column index j from the length-square distri-
bution ¢;(j) = |Ri;|?/|| Ri||*. Qis the distribution formed
from sampling w. This means that we should output j

with probability

for some constant m, and then

[(w, R. ;)|

T = e
R LR

(8)

Overall, this gives us a technique to sample entries of an
approximate vector formed as a linear combination of the
right singular vectors of some matrix with specific coef-
ficients A. This allows us to classically solve systems of
linear equations and compute preferences in recommen-
dation systems, but in a “quantum-inspired” way due to
the length-square distribution and query access restric-
tions that make the algorithm efficient.

B. Quantum-inspired Grover’s algorithm

We continue with a discussion of quantum-inspired
Grover’s algorithm (QiGA), as constructed in Ref. [2].
Let {w!, w?, w} € {0,1}" be the set of “marked”
bitstrings of length n, of which we are searching for one.
Let |w) = 22:1 |w®) be the uniform superposition of
marked states. Recall that the Grover oracle is

Up =1 — 2w){w]. (9)

Let |s) = \/27 22 ~11i) be the equal superposition state.
We want to classically compute the state |U,,) = Uyls).
We can express |¥,,) as a matrix product state (MPS),
a type of tensor network, with a relatively small bond
dimension y. An MPS is expressed as

V) = >

Tp_1--wo€{0,1}7

My —1(zp—1) - Mo(z0)|Tn—1""T0),
(10)
where the M;(x) are x x x matrices for 1 < i < n —2;
My(z) is a x x 1 matrix and M,,_;(x) is a 1 x x matrix.
The key observation is that the cost of constructing
|¥,,) as an MPS depends on the entanglement generated
by the particular oracle U,,, and the entanglement in the
quantum state in between the two oracle calls generated
by Grover’s algorithm is usually very low. An MPS can
be sampled in any local basis using a recursive algorithm
with runtime O(nx?) [5], with y as the bond dimension,
which scales with the entanglement of the state.



increasing information about problem

@ knowing 'oracle’

quantum circuit

011010

v

reduces to % reducesto |y = (by Vb2 V by)
—

A(bs V bs V bg)
W N\ N |
@

@ knowing problem
to be solved

011010

@ having the
abstract oracle

011010

ﬂ

@ try Grover's on try QiGA on good classical
quantum computer, classical computer algorithm or
scaling 2n/2 heuristic?

@ + low entanglement
strong constraints or T gate count? yes no
on quantum

@ hardware yes A

guess among
2 inputs at
random

classical approach succeeds

r

FIG. 2. Diagram indicating when it is suitable to use QiGA,
as per Ref. [2]. Problems where we know the oracle quantum
circuit, and it has low entanglement and can be simulated
easily, are most suitable for the algorithm.

The MPS construction turns out to be the bottleneck
of QIGA. We can express the state as

W) = Is) ﬁan (11)

which we know is an MPS of bond dimension xy =1+ 5
since it’s the sum of 1 4+ S product states. We can then
perform a non-unitary classical operation, subtracting |s)
from the state above.

We can prove that a mapping from |¥) ® |s) to (|¥) —
|s))®|s) for all |¥) is non-unitary in a similar way we can
prove the no-cloning theorem: in the case where |¥) =
|s), this will clearly not preserve norm. Applying this
operation to an MPS costs O(nx?) [2].

Once we normalize this new state |[W) = H,

we can sample from it to obtain the states {|w®)} with
uniform probability. In fact, we can even use a simi-
lar approach to count the number of solutions by acting
with U,, on the unnormalized state 2 _1 |b). Then the
squared norm of the resulting state after we subtract |s)
gives the number of solutions.

While Ref. [2] focuses primarily on the 3-SAT algo-
rithm as an example, an important thing to note about
QiGA is that it is as general as Grover’s algorithm. Con-
sider Figure 2, which illustrates that QiGA can be used
in essentially any case where Grover’s algorithm can be
used. As long as we can construct the quantum oracle
for any Grover problem, we can run QiGA.

III. THE CASE FOR

The power of these two quantum-inspired algorithms
comes from their gemerality. These algorithms can be

applied to a wider range of problems than direct com-
putation or most classical heuristics, often with compa-
rable performance. While the existence of scalable and
widespread quantum hardware in a decade would not
invalidate our argument, we find the premise unlikely.
Furthermore, the practical superiority of the compa-
rable quantum algorithms—the Harrow-Hassidim-Lloyd
(HHL) algorithm for solving linear systems and Grover’s
algorithm for search—is questionable at best [2, 6].

A. Examining quantum-inspired SVD in practice

Ref. [1] provides several numerical experiments of their
proposed quantum-inspired algorithms for linear algebra
and recommendation systems. The setup that provided
the greatest speedup over direct SVD calculation was ap-
plying the algorithm to solve linear systems of equations
Ax = b for randomly chosen A € R™*" and b € R™,
where m = 40,000 and n = 20,000.

The results of this experiment are indicated in Figure
3. For k = k = 5, it took 2470.4 seconds for the quantum-
inspired algorithm to execute compared to 5192.5 seconds
for a direct calculation on two Intel Xeon CPUs operating
at 2.4GHz with access to 252GB of shared memory in
Python. The overall error in & compared to the exact
solution was 8.7%. These results are promising, as they
indicate that with high enough dimension and low enough
rank and condition number, a speedup will be present.

While in the experiment for recommendation systems,
which used the MovieLens 100K database, the quantum-
inspired algorithm was much slower than direct calcu-
lation, the dataset used was relatively small, containing
only 611 users and 9724 movies [1].

The algorithm is better suited for much larger datasets
that could be represented with very low-rank approxima-
tions. Ref. [1] cites running the algorithm on powerful
supercomputers to compute much larger datasets as a fu-
ture goal to more fully evaluate the algorithm’s practical
efficiency.

Useful recommendation systems like this do exist in the
real world. For example, consider the latent semantic
indexing (LSI) approach for classifying, updating, and
retrieving patent documents described in Ref. [7]. This
problem relies on SVD of a low-rank approximation of
some preference matrix representing some aspect of data
relating to filed patents. For example, a terms-documents
matrix A contains entries A;; that represent the number
of times term i appears in document j.

Each class of patents contains thousands of documents
and tens of thousands of words, overall creating a much
larger matrix than the one representing the MovieLens
100K database, and Ref. [7] indicates that they can be
approximated with a rank as low as £k = 80. This may
indicate that the quantum-inspired algorithm for recom-
mendation systems may provide a speedup in comparison
to directly calculating SVD for LSI.

The argument for the utility of quantum-inspired algo-
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FIG. 3. Relative errors with corresponding standard deviations, as simulated in Ref. [1], for m = 40,000, n = 20,000,k = x = 5.
Each coefficient A, was estimated by taking N = 10* samples and producing condensed matrices of size r = 4250 and ¢ = 4250.

The experiment was repeated 10 times for each data point.

rithms on this dataset is also strengthened by the “decade
from now” framing of our proposition, as the total num-
ber of patents in the United States has grown increasingly
rapidly over time. In a decade, the size of this dataset
will be notably larger, and thus even harder to compute
by direct calculation.

On the quantum side, the HHL algorithm for solving
linear systems has been very promising, but currently has
some implementation concerns. Most notably, the cir-
cuit depth of the data-loading algorithm used in an early
practical implementation of HHL is exponential in the
number of qubits [6]. It is apparent that the quantum-
inspired algorithms are more closely within reach than
HHL on a quantum computer for any practical use case.

B. Evaluating the performance of
quantum-inspired Grover’s algorithm

As for quantum-inspired Grover’s algorithm, the ar-
gument in favor relies on showing that for at least one
problem, the algorithm will perform better than Grover’s
algorithm as well as any known classical algorithm.

The problem for Grover’s algorithm is that despite hav-
ing a quadratic asymptotic speedup compared to QiGA
in the worst case, it has a worse prefactor. This is due to
the fact that Grover’s algorithm requires O(2"/2) calls to
the oracle while QiGA requires only one. The actual cost
of executing the oracle, which Grover’s algorithm tradi-
tionally assumes is a black box, creates a larger prefactor
for Grover’s algorithm than for QiGA.

The claim in Ref. [2] is that there is only a small class
of problems for which QiGA is less effective than Grover’s
algorithm, and they all require extremely large problem
instances (a search space of 270 > 102! at minimum)
as well as high entanglement, resulting in a high bond
dimension.

While it is noted in Ref. [2] that more efficient clas-
sical algorithms exist to solve the 3-SAT problem, such
as Schoning’s algorithm, which scales as O((4/3)™), it
is clear that for some instances of 3-SAT, QiGA can
be highly efficient. Furthermore, when considering the
general k-SAT problem, Schoning’s algorithm scales as
O((2(1—1/k))™) [8], so QiGA could potentially be more
useful for a larger class of larger k-SAT instances.

We conclude our argument in favor of the proposition
with one alternative potential application of QiGA. Con-

sider the subset sum problem, which asks whether or not
there is a solution to

> aiwi =M, Vi €{0,1}, (12)
i=1
given positive integers @ = (ay,...,a,) and M. The

problem is NP-complete. A quantum oracle can be pro-
duced relatively efficiently, using n qubits and n classical
“shadow registers”, as well as using only CNOT and Tof-
foli gates [9]. If we can construct this oracle efficiently,
subset sum will be a suitable potential candidate for a
speedup using QiGA, scaling with a relatively small pref-
actor (but still exponentially, since it is NP-complete).
Crucially, the most efficient current classical algorithm
scales as O(20-283") while a quantum algorithm that re-
lies solely on Grover search has been formulated that can
run in O(2%-2357) [10]. This means that if QIGA can scale
similarly to Grover’s in this case, it will be optimal for
solving the subset sum problem.

IV. THE CASE AGAINST

While quantum-inspired classical algorithms offer a
powerful framework for dequantizing quantum advan-
tages, there are serious obstacles to their becoming the
default choice for realistic industrial workloads. In the
setting of Ref. [1], the main issues are: (i) the polylog-
arithmic dependence on matrix dimensions is bought at
the price of very steep polynomial factors in rank, con-
dition number, and accuracy; and (ii) even in the most
favorable numerical experiments, speedups appear only
in a narrow regime of extremely low rank and small con-
dition number. For QiGA [2], efficiency is tightly con-
strained by entanglement and circuit treewidth, so that
the tensor network approach is fast precisely on instances
that are already easy for conventional algorithms.

A. Limitations of quantum-inspired SVD

Throughout this section, k denotes the target rank of
the low-rank approximation and x the condition number
of A, i.e. the ratio between the largest and smallest non-
zero singular values. Intuitively, small £ means that the
data effectively live in a low-dimensional subspace, and
small k means that solving Ax = b is numerically stable.



Both classical and quantum-inspired solvers can start
from the same FKV sketch of A. After computing ap-
proximate singular values ¢, and vectors, a classical low-
rank solver can explicitly reconstruct the solution vector
x in time O(kn), linear in n for fixed k. The quantum-
inspired algorithm instead avoids this linear dependence
on the ambient dimension by sampling entries of & (via
coefficient estimation and rejection sampling), achieving
a running time of

Tis = O(r'0k%|| Al|% /%) (13)

for linear systems, and a similarly high-degree polynomial
in k and 1/e for recommendation systems [1]. In other
words, the price of polylogarithmic dependence on m and
n is a harsh sensitivity to rank, conditioning, and target
accuracy.

Ref. [1] explicitly emphasizes that, for practical matrix
sizes, the direct O(kn) reconstruction “can be done ex-
tremely fast even for problems of large size” and that
their sampling-based approach only becomes competi-
tive in the regime of very large, very low-rank, and well-
conditioned matrices. Outside that sweet spot, the sam-
pling overhead dominates.

This picture is borne out by the random-matrix exper-
iments summarized in Fig. 3. In the most favorable case
m = 40,000, n = 20,000, k = k = 5, and carefully tuned
sketch parameters, the quantum-inspired solver achieves
a modest wall-clock speedup over direct SVD with a rel-
ative error in x of about 9%. However, as k and x are
increased away from this tuned setting, the relative er-
ror grows rapidly and approaches O(1) already for k =~ 50
and k ~ 10%. The regime in which the method is both ac-
curate and faster than direct SVD is therefore extremely
Narrow.

The situation becomes even less favorable on real data.
On the MovieLens 100K recommendation dataset, the
user—item matrix has full rank £ = 611 and condition
number xk ~ 181. Even when the algorithm is run in a
low-rank mode with &k = 10, the recovered rating vector
has relative error 7, =~ 0.71, and the quantum-inspired
pipeline is almost two orders of magnitude slower than
a straightforward SVD-based solver on the same hard-
ware [1].

One might hope that patent latent semantic index-
ing (LSI) provides a more hospitable testbed: the
term—document matrices considered in Ref. [7] can be
truncated to about k ~ 80 singular values while pre-
serving retrieval quality, and thus look closer to the “ex-
plicitly low-rank” regime. But the same study finds
that LSI only modestly improves over the simpler Vector
Space Model (VSM), with typical gains of order 5% and
some classes where LSI slightly degrades performance [7].
Combined with the strong polynomial dependence on k,
k, and 1/e, this leaves very little practical headroom:
by the time the quantum-inspired pipeline is accurate
enough to compete with VSM, its sampling overhead
wipes out any potential runtime advantage. In short, for
realistic low-rank information-retrieval tasks, the param-

eter regime in which quantum-inspired SVD is attractive
does not seem to overlap with the regime where LSI-style
methods are empirically useful.

B. Limitations of quantum-inspired Grover search

The overall cost of QiIGA is controlled by the maxi-
mum bond dimension Yp.x of the matrix product state
representing the intermediate Grover states. In the ten-
sor network implementation of Ref. [2], the runtime scales
as

Taica = poly(n) Xaaxs (14)

up to lower order factors. Since ypmax is directly tied
to the bipartite entanglement generated by the oracle cir-
cuit, QiGA is efficient only when the Grover oracle ad-
mits a low-entanglement, effectively one-dimensional ten-
sor network representation. In contrast, for circuits that
generate volume-law entanglement, Xmax Erows exponen-
tially and QiGA inherits the same exponential scaling as
generic tensor network simulations.

The random 3-SAT experiments in Ref. [2] illustrate
this behavior concretely. Near the satisfiability phase
transition, the clause graph is highly connected and has
large treewidth, and the observed bond dimensions for in-
stances with n &~ 30-40 variables are already in the range
Xmax ~ 103-10%. As a result, QiGA runtimes grow from
seconds to hours on these tiny instances, even though
state-of-the-art classical SAT solvers routinely solve ran-
dom 3-SAT at n = 40 in well under a second. In other
words, the generic “hard” regime for 3-SAT from the
SAT-solver literature coincides with the regime where
Xmax becomes large and QiGA ceases to be competitive.

V. THE CLASS DISCUSSION

We presented our research to our Physics 536 (Quan-
tum Computing) class on December 5, 2025. After our
presentation, we noted two major points of disagreement
in our rebuttal back-and-forth section: the viability of
the asymptotic scaling of the FKV algorithm and coef-
ficient estimation steps, and the viability of a general
QiGA tensor network compared to a more specific tensor
network construction for each problem.

The quantum-inspired algorithms for linear algebra
and recommendation systems take polynomial scaling in
the rank k& and condition number x in exchange for avoid-
ing linear scaling in the matrix size m or n. In the con-
text of coefficient estimation, this polynomial scaling can
often be worse than a direct reconstruction of the solu-
tion vector @, and the fact that FKV generally scales as
O(kS /£%) already heavily restricts the problem instances
to very low-rank cases [1]. We agreed that the problem
could only be industrially viable for large supercomput-
ers for a very limited set of problems, but we disagreed



whether or not these problems would constitute real “in-
dustrially default” viability.

As for QIGA, we agreed that there is more research
required to measure the entanglement of different ora-
cle constructions (such as subset sum) and better under-
stand the viability of the algorithm for certain problems
to see whether or not they are optimal and could con-
stitute practical industrial usage. However, we disagreed
on whether a tensor network could always be constructed
more specific to the problem structure, such as is the case
for the 3-SAT problem focused on in Ref. [2].

While the class was split in their vote on the propo-
sition, more students voted against the proposition than
in favor, indicating that they were not convinced that
either of these algorithms could constitute widespread
industrial usage by 2035.

VI. CONCLUSIONS

While quantum-inspired algorithms probably won’t be
widely used in an industrial context over established clas-
sical algorithms, we believe that they are still formidable
classical algorithms as well as being informative in the
context of comparison to quantum algorithms.

Their generality makes them interesting to examine
for both making connections between classical algorithms
that seem very distinct while also functioning as checks
on the potential power of quantum algorithms. They are
a reason to study quantum algorithms separate from the
practicality of actually running quantum algorithms.

We greatly enjoyed the experience of researching these
two algorithms for our quantum computing class!
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