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Introduction

Why study quantum algorithms? A major reason: we believe that

at some point in the future, they will be useful to solving

real-world problems. This requires quantum hardware...

Quantum algorithms → “quantum-inspired” classical algorithms;

made to show that a purported quantum speedup can often

actually be just as efficient on a classical computer.

Are these quantum-inspired algorithms useful to solve problems in

their own right?
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The Argument In Favor

The key thing to note about these

two algorithms is their generality.
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Quantum-Inspired Algorithms for Linear Algebra and Recom-

mendation Systems

Given an m × n matrix A ∈ Rm×n with singular value

decomposition (SVD)

A =
k∑

ℓ=1

σℓu(ℓ)v (ℓ)T ,

the goal is to sample entries of the n-dimensional vector

x =
k∑

ℓ=1

λℓv (ℓ),

with respect to the length-square probability distribution

px(i) = x2i /∥x∥2.
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Choosing Coefficients λℓ

For linear systems of equations, we can get the solution to Ax = b
for some vector b with the coefficients

λℓ =
1

σ2
ℓ

⟨v (ℓ),ATb⟩.

For recommendation systems, A is a preference matrix where Aij

denotes the rating of user i to product j . We can get x , the i-th

row of the low-rank approximation of A, representing the

preferences of user i , by

λℓ = ⟨AT
i , v

(ℓ)⟩

where Ai is the i-th row of A.
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Frieze-Kannan-Vempala (FKV) Algorithm
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Getting Solution Vector x from C

Given singular values σ̃ℓ and left singular vectors ω(ℓ) of C , we can

pretty easily calculate the approximate solution vector x̃ .

For λ = ⟨y , z⟩, define a random variable χi = yizi/py (i) sampled

by py (i) = y2i /∥y∥2. Take N samples → unbiased estimator λ̂ ≈ λ.

We can implicitly compute the approximate solution vector

x̃ =
∑k

ℓ=1 λℓv (ℓ) = RTw , where w ≡
∑k

ℓ=1
λ̃ℓ
σ̃ℓ
ω(ℓ), using

rejection sampling to only query the entries we need of w and R to

sample from x̃ with respect to px(i) = x2i /∥x∥2.
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Experimental Results for Linear Systems

For randomly generated m × n matrices A and length m vectors b
with rank k and condition number κ, compute x such that Ax = b
for m = 40,000, n = 20,000, and k = κ = 5:

• 5192.5 seconds for a direct calculation

• 2470.4 seconds for the quantum-inspired algorithm

The error was about 8.7% for the solution vector x .
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A Potential Application for Recommendation Systems

MovieLens 100K database (relatively small): direct calculation

much faster than the quantum-inspired algorithm.

One potential candidate for a speedup for recommendation

systems is patent indexing:

• Very large preference matrix (thousands of documents and

tens of thousands of words)

• Seems to be approximable with rank as low as k = 80

Here, the vector x represents the alignment of term i for each

document j .
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“Opening the Black Box” of the Grover Oracle

We know that Grover’s algorithm has a quadratic speedup, i.e.

O(2n/2) for searching length n bitstrings as opposed to O(2n).

However, remember that it relies on having access to a black-box

oracle, which it assumes O(1).

If we throw out this assumption and construct the oracle ourselves,

is there still a quantum speedup in practice?
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“Opening the Black Box” of the Grover Oracle

Short answer: it depends on the problem, but mostly no.

n

QiGA worst
case problems ~2n

QiGA common problems ~An

QiGA easy problems ~ na

Grover ~2n/2

> 70-80

> thousands of years
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Quantum-inspired Grover’s Algorithm (QiGA)

Consider the state

|Ψw ⟩ = Uw |s⟩ = |s⟩ − 2√
2n

S∑
α=1

|wα⟩,

where |s⟩ is the equal superposition state and |w1⟩, . . . , |wS⟩ are
the marked states.

How to extract the marked states? One solution: implement a

mapping |Ψ⟩ ⊗ |s⟩ 7→ (|Ψ⟩ − |s⟩)⊗ |s⟩. But this is not unitary!

We could do this well on a classical computer using only one oracle

call if we could represent |Ψw ⟩ (relatively) efficiently.
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Using a Matrix Product State (MPS) to Represent |Ψw⟩

A matrix product state (MPS) is represented as

|Ψ⟩ =
∑

xn−1···x0∈{0,1}n
Mn−1(xn−1) · · ·M0(x0)|xn−1 · · · x0⟩

where the Mi (x) are χ× χ matrices for 1 ≤ i ≤ n − 2; M0(x) is a

χ× 1 matrix and Mn−1(x) is a 1× χ matrix.

χ = bond dimension. Crucially, it is dependent on the

entanglement of the state; the entanglement of |Ψw ⟩ is usually low.

Note that exponential problems will still scale exponentially at

worst → just a relative speedup.
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When Can We Actually Use QiGA?
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Potential Applications for QiGA: k-SAT

The paper focuses on 3-SAT, which scales with O(An) where

1 < A < 2 in the general case but can actually scale polynomially

in certain cases (e.g. “quasi-1D” 3-SAT).

QiGA could potentially be more effective for higher instances of

k-SAT, especially when the number of satisfying inputs is low.

For comparison, Schöning’s algorithm for k-SAT scales as

O((2(1− 1/k))n).
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Potential Applications for QiGA: Subset Sum

Given positive integers a = (a1, . . . , an) and M, find

n∑
i=1

aixi = M, ∀i , xi ∈ {0, 1}.

A quantum oracle for subset sum can be produced relatively

efficiently, using n qubits and n classical “shadow registers”, as

well as using only CNOT and Toffoli gates.

The best classical algorithm is currently O(20.283n), while a

proposed quantum algorithm that relies solely on Grover search is

O(20.236n). Hence QiGA success = optimality!
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Asymptotics beyond the hype

Theoretical worst-case bounds

• Linear systems:

Õ
(
κ16k6 ∥A∥6F/ε6

)
• Recommendation:

Õ
(
k12/ε12

)
• Here Õ(·) hides polylogarithmic factors in m, n, but not in k, κ, ε.

What these parameters mean in practice

• k: target rank / effective latent dimension (e.g. # topics in LSI).

• κ: condition number of A (sensitivity of the problem).

• ε: accuracy tolerance for the output (smaller ε means we want a

more precise solution).
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Hidden sampling cost N (I)

General Monte Carlo bound

• Estimating an inner product ⟨y , z⟩ from sampled entries:

N = O

(
1

ε2 cos2 θ

)
,

where θ is the angle between y and z and ε is the target precision

of this estimator.

• Linear systems:

N = O

(
k2κ2κ2

β

ε2

)
• Recommendation systems:

N = O

(
k κ2

ν

ε2

)
Takeaway: Sampling alone is polynomial in k , κ and 1/ε.
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Hidden sampling cost N (II)

Numerical example for the linear-systems bound

• Use “moderate” parameters:

k = 100, κ = 100, κβ = 100, ε = 10−2.

• Plugging into N = O
(
k2κ2κ2

β/ε
2
)
gives

N ∼ 1016 samples.

Contrast with the experiments

• In the paper they fix N = 104 to keep the runtime reasonable.

• Increasing k or κ, or asking for smaller ε, would very quickly make

N infeasible.
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Two options after FKV

FKV step

• Get a small sketch C and approximate right singular vectors v (ℓ) of A.

• Target vector (solution / recommendation):

x̃ =
k∑

ℓ=1

λℓ v
(ℓ).

Option 1: direct reconstruction (classical)

• Compute λℓ and v (ℓ) explicitly from the FKV output.

• Form x̃ explicitly; cost O(kn) (linear in n for fixed k).

Option 2: QI sampling

• Keep x̃ implicit; store A in a length–square sampling data structure.

• Estimate λℓ and sample entries of x̃ using Monte Carlo; runtime

poly(k, κ, 1/ε, logm, log n).
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When can sampling beat O(kn)?

What the paper says

• Direct reconstruction from the approximate SVD costs O(kn).

• Authors: this “can be done extremely fast even for problems of large size”

because it is linear in n.

• Sampling-based steps are preferable only in very structured cases.

Conditions for a QI advantage

• Matrix dimensions m, n extremely large and rank k very small.

• Condition number κ small and accuracy requirement ε not too strict.

• Length-square sampling access to A available.

Otherwise

• Overheads in k, κ, 1/ε and the sampling cost N dominate, so the simple

O(kn) reconstruction path is usually better.
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Random-matrix case: error behaviour

• Setup: m = 40,000, n = 20,000, rank k = 5, condition number

κ = 5, r = c = 4250, N = 104 samples.

• Best case (panel a, tuned r): solution-vector error ηx ≈ 8.7%.

• Panels b,c: error grows almost linearly with k and κ; around k ≈ 50

or κ ≈ 102 the error is already O(1) (order 100%).
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Random-matrix case: runtime and baseline

Random matrix, k = κ = 5 (best-case setup)

• Quantum-inspired total: tQI ≈ 2470 s.

• Direct calculation total: tdirect ≈ 5193 s (exact SVD of A + exact

solve).

Important caveat

• Both methods already run FKV on A and get an approximate SVD

• The direct classical algorithm could also use that low-rank SVD and

reconstruct x in O(kn) time, without Monte Carlo sampling.

• Then FKV error would be shared, and the only difference would be:

direct O(kn) reconstruction vs. QI sampling overhead.
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Real-world dataset: MovieLens 100K

Setup

• A ∈ R943×1682: user–movie ratings (MovieLens 100K).

• Low-rank model with moderate k (tens of latent factors).

• Same QI pipeline as for random matrices: FKV sketch + sampling with

N = 104.

Accuracy

• QI algorithm: solution-vector error ηx ≈ 0.7 (about 70%).

• Direct classical method: noticeably smaller error on the same task; within

their tested parameters, QI never beats direct on error.

Runtime

• QI method is significantly slower than the direct method (sampling +

data-structure overhead dominate).

• So on this first realistic recommendation benchmark, QI is both less

accurate and slower than a standard classical baseline. 23



When is QiGA efficient?

• QiGA = classical tensor-network (MPS/MPO) simulation of Grover.

• Runtime is dominated by the maximum MPS bond dimension χmax:

TQiGA ∝ poly(n)χ3
max.

• Bond dimension χ measures bipartite entanglement in the oracle

circuit:

• low entanglement ⇒ small χmax ⇒ cheap;

• volume-law entanglement ⇒ huge χmax ⇒ exponential cost.

• So the only regime where QiGA can be competitive is when the

Grover oracle admits a low-entanglement, “almost 1D”

tensor-network representation.
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Random 3-SAT: entanglement and runtime blow up

QiGA runtime is dominated by the max bond dimension χmax

n S χmax time

30 4 467 21 s

32 2 954 1.8 min

34 48 1162 3.2 min

36 16 1994 8.3 min

38 8 5867 1.6 h

40 0 1402 4.2 min

40 28 2926 21 min

40 161 5690 1.65 h

40 174 10374 6.5 h

• Random 3-SAT near the phase transition: clause graph is highly

connected and has large treewidth, so χmax is already in the 103 range.

• As instances get more “messy”, χmax jumps to 104 and QiGA time grows

from seconds to hours, while modern classical SAT solvers solve these

n ≈ 40 instances in ≪ 1 second.
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Structure: low treewidth ⇒ easy for both sides

quasi-1D SAT (low treewidth)

random SAT (high treewidth)

• Treewidth: how close the constraint graph is to a tree. Left: small

treewidth; right: large treewidth.

• Bounded treewidth k ⇒ tree decomposition and DP in time f (k) n

(Courcelle / DP). QiGA’s polynomial regime (quasi-1D SAT, structured

subset sum) lives exactly in this low-treewidth region, where classical

algorithms are already strong.
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Rebuttal + Questions
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