
Will a Quantum-Inspired Classical Algorithm

Become the Default Algorithm for an

Industrially Relevant Computational Task in

the Next Decade?

Adam Godel and Egemen Tunca

December 5, 2025

Boston University Physics 536: Quantum Computing

Introduction

Why study quantum algorithms? A major reason: we believe that

at some point in the future, they will be useful to solving

real-world problems. This requires quantum hardware...

Quantum algorithms → “quantum-inspired” classical algorithms;

made to show that a purported quantum speedup can often

actually be just as efficient on a classical computer.

Are these quantum-inspired algorithms useful to solve problems in

their own right?

1

The Argument In Favor

The key thing to note about these

two algorithms is their generality.

2

Quantum-Inspired Algorithms for Linear Algebra and Recom-

mendation Systems

Given an m × n matrix A ∈ Rm×n with singular value

decomposition (SVD)

A =
k∑

ℓ=1

σℓu(ℓ)v (ℓ)T ,

the goal is to sample entries of the n-dimensional vector

x =
k∑

ℓ=1

λℓv (ℓ),

with respect to the length-square probability distribution

px(i) = x2i /∥x∥2.

3

Choosing Coefficients λℓ

For linear systems of equations, we can get the solution to Ax = b
for some vector b with the coefficients

λℓ =
1

σ2
ℓ

⟨v (ℓ),ATb⟩.

For recommendation systems, A is a preference matrix where Aij

denotes the rating of user i to product j . We can get x , the i-th

row of the low-rank approximation of A, representing the

preferences of user i , by

λℓ = ⟨AT
i , v

(ℓ)⟩

where Ai is the i-th row of A.

4

Frieze-Kannan-Vempala (FKV) Algorithm

5

Getting Solution Vector x from C

Given singular values σ̃ℓ and left singular vectors ω(ℓ) of C , we can

pretty easily calculate the approximate solution vector x̃ .

For λ = ⟨y , z⟩, define a random variable χi = yizi/py (i) sampled

by py (i) = y2i /∥y∥2. Take N samples → unbiased estimator λ̂ ≈ λ.

We can implicitly compute the approximate solution vector

x̃ =
∑k

ℓ=1 λℓv (ℓ) = RTw , where w ≡
∑k

ℓ=1
λ̃ℓ
σ̃ℓ
ω(ℓ), using

rejection sampling to only query the entries we need of w and R to

sample from x̃ with respect to px(i) = x2i /∥x∥2.

6

Experimental Results for Linear Systems

For randomly generated m × n matrices A and length m vectors b
with rank k and condition number κ, compute x such that Ax = b
for m = 40,000, n = 20,000, and k = κ = 5:

• 5192.5 seconds for a direct calculation

• 2470.4 seconds for the quantum-inspired algorithm

The error was about 8.7% for the solution vector x .

7

A Potential Application for Recommendation Systems

MovieLens 100K database (relatively small): direct calculation

much faster than the quantum-inspired algorithm.

One potential candidate for a speedup for recommendation

systems is patent indexing:

• Very large preference matrix (thousands of documents and

tens of thousands of words)

• Seems to be approximable with rank as low as k = 80

Here, the vector x represents the alignment of term i for each

document j .

8

“Opening the Black Box” of the Grover Oracle

We know that Grover’s algorithm has a quadratic speedup, i.e.

O(2n/2) for searching length n bitstrings as opposed to O(2n).

However, remember that it relies on having access to a black-box

oracle, which it assumes O(1).

If we throw out this assumption and construct the oracle ourselves,

is there still a quantum speedup in practice?

9

“Opening the Black Box” of the Grover Oracle

Short answer: it depends on the problem, but mostly no.

n

QiGA worst
case problems ~2n

QiGA common problems ~An

QiGA easy problems ~ na

Grover ~2n/2

> 70-80

> thousands of years

Co
m

pu
tin

g
tim

e
(lo

g
 sc

al
e)

10

Quantum-inspired Grover’s Algorithm (QiGA)

Consider the state

|Ψw ⟩ = Uw |s⟩ = |s⟩ − 2√
2n

S∑
α=1

|wα⟩,

where |s⟩ is the equal superposition state and |w1⟩, . . . , |wS⟩ are
the marked states.

How to extract the marked states? One solution: implement a

mapping |Ψ⟩ ⊗ |s⟩ 7→ (|Ψ⟩ − |s⟩)⊗ |s⟩. But this is not unitary!

We could do this well on a classical computer using only one oracle

call if we could represent |Ψw ⟩ (relatively) efficiently.

11

Using a Matrix Product State (MPS) to Represent |Ψw⟩

A matrix product state (MPS) is represented as

|Ψ⟩ =
∑

xn−1···x0∈{0,1}n
Mn−1(xn−1) · · ·M0(x0)|xn−1 · · · x0⟩

where the Mi (x) are χ× χ matrices for 1 ≤ i ≤ n − 2; M0(x) is a

χ× 1 matrix and Mn−1(x) is a 1× χ matrix.

χ = bond dimension. Crucially, it is dependent on the

entanglement of the state; the entanglement of |Ψw ⟩ is usually low.

Note that exponential problems will still scale exponentially at

worst → just a relative speedup.

12

When Can We Actually Use QiGA?

1

0 1 1 0 1 0

yes
no

0 1 1 0 1 0 0 1 1 0 1 0

increasing information about problem

good classical
algorithm or
heuristic?

guess among
2n inputs at
random

having the
abstract oracle

knowing 'oracle'
quantum circuit

knowing problem
to be solved

try Grover's on
quantum computer,
scaling 2n/2

try QiGA on
classical computer

low entanglement
or T gate count?no

yes

classical approach succeeds

yes no

reduces toreduces to

strong constraints
on quantum
hardware

123

4

56 7

8
9

13

Potential Applications for QiGA: k-SAT

The paper focuses on 3-SAT, which scales with O(An) where

1 < A < 2 in the general case but can actually scale polynomially

in certain cases (e.g. “quasi-1D” 3-SAT).

QiGA could potentially be more effective for higher instances of

k-SAT, especially when the number of satisfying inputs is low.

For comparison, Schöning’s algorithm for k-SAT scales as

O((2(1− 1/k))n).

14

Potential Applications for QiGA: Subset Sum

Given positive integers a = (a1, . . . , an) and M, find

n∑
i=1

aixi = M, ∀i , xi ∈ {0, 1}.

A quantum oracle for subset sum can be produced relatively

efficiently, using n qubits and n classical “shadow registers”, as

well as using only CNOT and Toffoli gates.

The best classical algorithm is currently O(20.283n), while a

proposed quantum algorithm that relies solely on Grover search is

O(20.236n). Hence QiGA success = optimality!

15

Asymptotics beyond the hype

Theoretical worst-case bounds

• Linear systems:

Õ
(
κ16k6 ∥A∥6F/ε6

)
• Recommendation:

Õ
(
k12/ε12

)
• Here Õ(·) hides polylogarithmic factors in m, n, but not in k, κ, ε.

What these parameters mean in practice

• k: target rank / effective latent dimension (e.g. # topics in LSI).

• κ: condition number of A (sensitivity of the problem).

• ε: accuracy tolerance for the output (smaller ε means we want a

more precise solution).

16

Hidden sampling cost N (I)

General Monte Carlo bound

• Estimating an inner product ⟨y , z⟩ from sampled entries:

N = O

(
1

ε2 cos2 θ

)
,

where θ is the angle between y and z and ε is the target precision

of this estimator.

• Linear systems:

N = O

(
k2κ2κ2

β

ε2

)
• Recommendation systems:

N = O

(
k κ2

ν

ε2

)
Takeaway: Sampling alone is polynomial in k , κ and 1/ε.

17

Hidden sampling cost N (II)

Numerical example for the linear-systems bound

• Use “moderate” parameters:

k = 100, κ = 100, κβ = 100, ε = 10−2.

• Plugging into N = O
(
k2κ2κ2

β/ε
2
)
gives

N ∼ 1016 samples.

Contrast with the experiments

• In the paper they fix N = 104 to keep the runtime reasonable.

• Increasing k or κ, or asking for smaller ε, would very quickly make

N infeasible.

18

Two options after FKV

FKV step

• Get a small sketch C and approximate right singular vectors v (ℓ) of A.

• Target vector (solution / recommendation):

x̃ =
k∑

ℓ=1

λℓ v
(ℓ).

Option 1: direct reconstruction (classical)

• Compute λℓ and v (ℓ) explicitly from the FKV output.

• Form x̃ explicitly; cost O(kn) (linear in n for fixed k).

Option 2: QI sampling

• Keep x̃ implicit; store A in a length–square sampling data structure.

• Estimate λℓ and sample entries of x̃ using Monte Carlo; runtime

poly(k, κ, 1/ε, logm, log n).

19

When can sampling beat O(kn)?

What the paper says

• Direct reconstruction from the approximate SVD costs O(kn).

• Authors: this “can be done extremely fast even for problems of large size”

because it is linear in n.

• Sampling-based steps are preferable only in very structured cases.

Conditions for a QI advantage

• Matrix dimensions m, n extremely large and rank k very small.

• Condition number κ small and accuracy requirement ε not too strict.

• Length-square sampling access to A available.

Otherwise

• Overheads in k, κ, 1/ε and the sampling cost N dominate, so the simple

O(kn) reconstruction path is usually better.

20

Random-matrix case: error behaviour

• Setup: m = 40,000, n = 20,000, rank k = 5, condition number

κ = 5, r = c = 4250, N = 104 samples.

• Best case (panel a, tuned r): solution-vector error ηx ≈ 8.7%.

• Panels b,c: error grows almost linearly with k and κ; around k ≈ 50

or κ ≈ 102 the error is already O(1) (order 100%).

21

Random-matrix case: runtime and baseline

Random matrix, k = κ = 5 (best-case setup)

• Quantum-inspired total: tQI ≈ 2470 s.

• Direct calculation total: tdirect ≈ 5193 s (exact SVD of A + exact

solve).

Important caveat

• Both methods already run FKV on A and get an approximate SVD

• The direct classical algorithm could also use that low-rank SVD and

reconstruct x in O(kn) time, without Monte Carlo sampling.

• Then FKV error would be shared, and the only difference would be:

direct O(kn) reconstruction vs. QI sampling overhead.
22

Real-world dataset: MovieLens 100K

Setup

• A ∈ R943×1682: user–movie ratings (MovieLens 100K).

• Low-rank model with moderate k (tens of latent factors).

• Same QI pipeline as for random matrices: FKV sketch + sampling with

N = 104.

Accuracy

• QI algorithm: solution-vector error ηx ≈ 0.7 (about 70%).

• Direct classical method: noticeably smaller error on the same task; within

their tested parameters, QI never beats direct on error.

Runtime

• QI method is significantly slower than the direct method (sampling +

data-structure overhead dominate).

• So on this first realistic recommendation benchmark, QI is both less

accurate and slower than a standard classical baseline. 23

When is QiGA efficient?

• QiGA = classical tensor-network (MPS/MPO) simulation of Grover.

• Runtime is dominated by the maximum MPS bond dimension χmax:

TQiGA ∝ poly(n)χ3
max.

• Bond dimension χ measures bipartite entanglement in the oracle

circuit:

• low entanglement ⇒ small χmax ⇒ cheap;

• volume-law entanglement ⇒ huge χmax ⇒ exponential cost.

• So the only regime where QiGA can be competitive is when the

Grover oracle admits a low-entanglement, “almost 1D”

tensor-network representation.

24

Random 3-SAT: entanglement and runtime blow up

QiGA runtime is dominated by the max bond dimension χmax

n S χmax time

30 4 467 21 s

32 2 954 1.8 min

34 48 1162 3.2 min

36 16 1994 8.3 min

38 8 5867 1.6 h

40 0 1402 4.2 min

40 28 2926 21 min

40 161 5690 1.65 h

40 174 10374 6.5 h

• Random 3-SAT near the phase transition: clause graph is highly

connected and has large treewidth, so χmax is already in the 103 range.

• As instances get more “messy”, χmax jumps to 104 and QiGA time grows

from seconds to hours, while modern classical SAT solvers solve these

n ≈ 40 instances in ≪ 1 second.

25

Structure: low treewidth ⇒ easy for both sides

quasi-1D SAT (low treewidth)

random SAT (high treewidth)

• Treewidth: how close the constraint graph is to a tree. Left: small

treewidth; right: large treewidth.

• Bounded treewidth k ⇒ tree decomposition and DP in time f (k) n

(Courcelle / DP). QiGA’s polynomial regime (quasi-1D SAT, structured

subset sum) lives exactly in this low-treewidth region, where classical

algorithms are already strong.
26

Rebuttal + Questions

27

