Will a Quantum-Inspired Classical Algorithm
Become the Default Algorithm for an
Industrially Relevant Computational Task in
the Next Decade?

Adam Godel and Egemen Tunca
December 5, 2025

Boston University Physics 536: Quantum Computing

Introduction

Why study quantum algorithms? A major reason: we believe that
at some point in the future, they will be useful to solving
real-world problems. This requires quantum hardware...

Quantum algorithms — “quantum-inspired” classical algorithms;
made to show that a purported quantum speedup can often
actually be just as efficient on a classical computer.

Are these quantum-inspired algorithms useful to solve problems in
their own right?

The Argument In Favor

The key thing to note about these
two algorithms is their generality.

Quantum-Inspired Algorithms for Linear Algebra and Recom-

mendation Systems

Given an m x n matrix A € R™*" with singular value
decomposition (SVD)

k
A = Z Jgu(e)V(Z)T,
(=1

the goal is to sample entries of the n-dimensional vector

k
X = Z)\gV(Z),
/=1

with respect to the length-square probability distribution
px(i) = X7 /||x|1%.

Choosing Coefficients)\,

For linear systems of equations, we can get the solution to Ax = b
for some vector b with the coefficients

WE i<v(f>,ATb>.

2
9y
For recommendation systems, A is a preference matrix where Aj;
denotes the rating of user i to product j. We can get x, the i-th
row of the low-rank approximation of A, representing the

preferences of user i, by
/\E = <A:Ta V(£)>

where A; is the i-th row of A.

Frieze-Kannan-Vempala (FKV) Algorithm

-2.04 0.02 0.79 03 204 068 -0.37 04 -0.08 0.66

i =344 15 268 —0.93 4.04 —0.02 —0.78 0.96 —0.58 —1.99

525 —2.78 —-3.3 —1.97 —4.99 —5.27 1.16 1.38 -3.31 2.16

-0.03 3.14 249 -0.33 1.04 081 -0.21 —-0.84 18 —3.86

—2.51 245 3.35 —0.48 3.87 017 -0.59 0.62 048 -1.63

A= iy| —0.89 —=0.79 —1.5 141 -0.97 3.14 -0.19 —-1.58 1.37 -—0.68
0.42 131 136 —-0.12 0.69 -0.47 0.06 0.14 0.55 -0.18

i| —0.22 2.63 194 0.78 085 2.08 —0.18 —1.3 2.58 —2.31

00 129 109 084 06 117 -0.02 -06 1.6 0.06

3.69 148 1.27 -1.99 -1.2 -443 0.69 124 -1.13 —0.39

|

ip /—94.51 41.21 73.63 -25.55 111. —0.55 -21.43 26.38 —15.93 —54.67

R = iy| =7.33 87.64 64.64 2599 2832 69.31 —6. -—43.32 85.97 —76.97
T I3| 87.04 —46.09 —54.71 —32.66 —82.73 —87.37 19.23 22.88 —54.87 35.81
13 \=35.23 —31.27 —59.38 55.82 —38.4 124.31 —7.52 —62.55 54.24 —26.92

} Ji s J2
—94.51 4121 73.63 —21.43 26.38 —15.93 —54.67
R = —7.33 87.64 64.64 —6. —43.32 85.97 -76.97
87.04 —46.09 —54.71 19.23 22.88 —54.87 35.81

—35.23 —31.27 —59.38 —7.52 —62.55 54.24 —26.92

J1 J2 j Ja
106.02 57.6 —129.5 106.02
93.08 —94.6 —10.04 93.08
C= —78.78 49.96 119.26 —78.78
—85.51 —136.6 —48.28 —85.51

Getting Solution Vector x from C

0

Given singular values &, and left singular vectors w(®) of C, we can

pretty easily calculate the approximate solution vector X.

For A = (y, z), define a random variable x; = y;z;/p, (i) sampled
by py(i) = y?/|ly||>. Take N samples — unbiased estimator A ~ \.

We can implicitly compute the approximate solution vector

X = 22(:1 Av® = RTw, where w = Zéle (’%w“), using
rejection sampling to only query the entries we need of w and R to
sample from X with respect to py(i) = x?/||x||°.

Experimental Results for Linear Systems

Error

Parameters
Case study [r c N | Mo na N+
Random matrix ‘ 4250 4250 10* ‘ 0.010 £ 0.005 0.028 £ 0.004 0.101 £ 0.027 0.387 £ 0.191

2N Nz
0.087 +0.053

For randomly generated m x n matrices A and length m vectors b
with rank k and condition number x, compute x such that Ax = b
for m = 40,000, n = 20,000, and k = xk = b:

e 5192.5 seconds for a direct calculation

e 2470.4 seconds for the quantum-inspired algorithm

The error was about 8.7% for the solution vector x.

A Potential Application for Recommendation Systems

MovieLens 100K database (relatively small): direct calculation
much faster than the quantum-inspired algorithm.

One potential candidate for a speedup for recommendation

systems is patent indexing:

e Very large preference matrix (thousands of documents and

tens of thousands of words)

e Seems to be approximable with rank as low as k = 80

Here, the vector x represents the alignment of term / for each

document .

“Opening the Black Box” of the Grover Oracle

We know that Grover's algorithm has a quadratic speedup, i.e.
O(2"/?) for searching length n bitstrings as opposed to O(2").

However, remember that it relies on having access to a black-box
oracle, which it assumes O(1).

If we throw out this assumption and construct the oracle ourselves,
is there still a quantum speedup in practice?

“Opening the Black Box” of the Grover Oracle

Short answer: it depends on the problem, but mostly no.

> thousands of years

QiGA easy problems ~ n<

Computing time (log scale)

n > 70-80
10

Quantum-inspired Grover’s Algorithm (QiGA)

Consider the state

2
Vi) = Unls) = Is) = —= > [w*),
2" a=1
where |s) is the equal superposition state and |wl), ..., |w>) are

the marked states.

How to extract the marked states? One solution: implement a
mapping |V) ® |s) — (|]¥) — |s)) ® |s). But this is not unitary!

We could do this well on a classical computer using only one oracle
call if we could represent |V,) (relatively) efficiently.

11

Using a Matrix Product State (MPS) to Represent |V ,,)

A matrix product state (MPS) is represented as
V) = > Mp—1(xn—1) - - - Mo(x0)[Xn—1 - - - x0)
Xp—1-X0€{0,1}"

where the M;(x) are x x x matrices for 1 </ < n—2; My(x) is a
X % 1 matrix and M,_1(x) is a 1 X x matrix.

X = bond dimension. Crucially, it is dependent on the
entanglement of the state; the entanglement of |W,,) is usually low.

Note that exponential problems will still scale exponentially at
worst — just a relative speedup.

12

When Can We Actually Use QiGA?

increasing information about problem

having the @ knowing 'oracle’ @ knowing problem
abstract oracle quantum circuit to be solved
011@10 011010 011010
reduces to reducesto |y = (b1 Vb2 V bs)
—

A(bs V b V bg)

W N oy
@

@ try Grover's on

try QiGA on good classical
quantum computer, classical computer algorithm or
scaling 2n/2 * heuristic?
@ + low entanglement
strong constraints < or T gate count? yes no
on quantum no
@ v hardware * yes v

guess among
2n inputs at
random

| classical approach succeeds

A

13

Potential Applications for QiGA: k-SAT

The paper focuses on 3-SAT, which scales with O(A") where
1 < A < 2 in the general case but can actually scale polynomially
in certain cases (e.g. “quasi-1D" 3-SAT).

QiGA could potentially be more effective for higher instances of
k-SAT, especially when the number of satisfying inputs is low.

For comparison, Schoning's algorithm for k-SAT scales as

O((2(1 = 1/K))").-

14

Potential Applications for QiGA: Subset Sum

Given positive integers a = (a1,...,a,) and M, find
n
> aixi =M, Vi,x €{0,1}.
i=1

A quantum oracle for subset sum can be produced relatively
efficiently, using n qubits and n classical “shadow registers”, as
well as using only CNOT and Toffoli gates.

The best classical algorithm is currently O(29-283"), while a
proposed quantum algorithm that relies solely on Grover search is
0(29236m) Hence QiGA success = optimality!

ii5)

Asymptotics beyond the hype

Theoretical worst-case bounds

e Linear systems:
O(1°K° || A|12/<°)

e Recommendation:
O<k12/€12)

e Here 5() hides polylogarithmic factors in m, n, but not in k, , €.

What these parameters mean in practice

e k: target rank / effective latent dimension (e.g. # topics in LSI).
e r: condition number of A (sensitivity of the problem).

e c: accuracy tolerance for the output (smaller € means we want a

more precise solution).

16

Hidden sampling cost N (1)

General Monte Carlo bound

e Estimating an inner product (y, z) from sampled entries:

1
N= O(€2cos20> '

where 0 is the angle between y and z and ¢ is the target precision

of this estimator.
k2 K2 K2
N = o(. 5)
€

e Recommendation systems:

2
v-o('%)
&)

Takeaway: Sampling alone is polynomial in k, x and 1/e.

e Linear systems:

17

Hidden sampling cost N (1)

Numerical example for the linear-systems bound
e Use “moderate” parameters:
k =100, x =100, k=100, e=10"2
e Plugging into N = O(k2:‘€2l€%/€2) gives

N ~ 10 samples.

Contrast with the experiments

e In the paper they fix N = 10* to keep the runtime reasonable.

e Increasing k or k, or asking for smaller £, would very quickly make
N infeasible.

18

Two options after FKV

FKV step

e Get a small sketch C and approximate right singular vectors v(9) of A.

e Target vector (solution / recommendation):

k
%= Z Ao v,
=1

Option 1: direct reconstruction (classical)

e Compute)\, and v explicitly from the FKV output.

e Form X explicitly; cost O(kn) (linear in n for fixed k).
Option 2: QI sampling

e Keep X implicit; store A in a length—square sampling data structure.

e Estimate A\, and sample entries of X using Monte Carlo; runtime
poly(k, k,1/e,log m, log n).

19

When can sampling beat O(kn)?

What the paper says

e Direct reconstruction from the approximate SVD costs O(kn).

e Authors: this “can be done extremely fast even for problems of large size”

because it is linear in n.
e Sampling-based steps are preferable only in very structured cases.
Conditions for a QI advantage

e Matrix dimensions m, n extremely large and rank k very small.
e Condition number x small and accuracy requirement € not too strict.
e Length-square sampling access to A available.

Otherwise

e Overheads in k, x,1/e and the sampling cost N dominate, so the simple
O(kn) reconstruction path is usually better.

20

Random-matrix case: error behaviour

_oa||@ c=r,N=10" ~® 241 (b r=c=4250, N=10* ~-® 1000 { (€) r=c=4250, N=10* @
[ofr2! f(k) = 0.016 k —— 3 fix) =0.01 k ——
5 5 g 100
5% s s
3 . 8 SEY
2 02 |e g
£ T c c
S S § 1
Shol ! | + + I3 8 o1

0 a 0.01

500 1250 2000 2750 3500 4250 5000 5 20 40 60 80 100 5 10 100 1000 10000
Number of sampled rows r Rank of A Condition number of A

e Setup: m = 40,000, n = 20,000, rank k = 5, condition number
k=05, r=c=4250, N = 10* samples.

e Best case (panel a, tuned r): solution-vector error 7, & 8.7%.

e Panels b,c: error grows almost linearly with k and &; around k =~ 50
or r ~ 102 the error is already O(1) (order 100%).

21

Random-matrix case: runtime and baseline

Quantum-inspired algorithm Direct calculation
Case study | tLs tSyp ta te tow | tp ta te tiotal
Random matrix ‘ 1488.8 83.9 554.7 343 24704 ‘ 5191.1 1.4 0.0003 5192.5

Random matrix, k = x = 5 (best-case setup)

e Quantum-inspired total: tq ~ 2470 s.

e Direct calculation total: tgirect & 5193 s (exact SVD of A + exact

solve).

Important caveat

e Both methods already run FKV on A and get an approximate SVD

e The direct classical algorithm could also use that low-rank SVD and
reconstruct x in O(kn) time, without Monte Carlo sampling.

e Then FKV error would be shared, and the only difference would be:

direct O(kn) reconstruction vs. QI sampling overhead. 22

Real-world dataset: MovieLens 100K

Setup

o Ac R¥*182; yser-movie ratings (MovieLens 100K).
e Low-rank model with moderate k (tens of latent factors).

e Same QI pipeline as for random matrices: FKV sketch + sampling with
N = 10*.

Accuracy

e QI algorithm: solution-vector error 1, ~ 0.7 (about 70%).

e Direct classical method: noticeably smaller error on the same task; within
their tested parameters, QI never beats direct on error.

Runtime

e QI method is significantly slower than the direct method (sampling +
data-structure overhead dominate).

e So on this first realistic recommendation benchmark, QI is both /ess
accurate and slower than a standard classical baseline. 23

When is QiGA efficient?

e QiGA = classical tensor-network (MPS/MPO) simulation of Grover.

e Runtime is dominated by the maximum MPS bond dimension ymax:
Taica o< POLy(n) Xiax-
e Bond dimension y measures bipartite entanglement in the oracle
circuit:

e low entanglement = small xnax = cheap;
e volume-law entanglement = huge Xmax = exponential cost.

e So the only regime where QiGA can be competitive is when the
Grover oracle admits a low-entanglement, “almost 1D”
tensor-network representation.

24

Random 3-SAT: entanglement and runtime blow up

QiGA runtime is dominated by the max bond dimension ymax

n S Xmax time
30 4 467 21s
32 2 954 1.8 min
34 48 1162 3.2 min
36 16 1994 8.3 min
38 8 5867 1.6 h
40 0 1402 4.2 min
40 28 2926 21 min
40 161 5690 1.65 h
40 174 10374 6.5 h

e Random 3-SAT near the phase transition: clause graph is highly
connected and has large treewidth, so ymax is already in the 10° range.

e As instances get more “messy”, Xmax jumps to 10* and QiGA time grows
from seconds to hours, while modern classical SAT solvers solve these
n ~ 40 instances in < 1 second.

25

Structure: low treewidth = easy for both sides

e} O

quasi-1D SAT (low treewidth)

random SAT (high treewidth)

e Treewidth: how close the constraint graph is to a tree. Left: small
treewidth; right: large treewidth.

e Bounded treewidth k = tree decomposition and DP in time f (k) n
(Courcelle / DP). QiGA’s polynomial regime (quasi-1D SAT, structured
subset sum) lives exactly in this low-treewidth region, where classical

algorithms are already strong.
26

Rebuttal + Questions

27

