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Introduction

• Sophomore undergraduate

studying math and computer

science at Boston University

• Interested in quantum

computing and mechanics as

well as a multitude of

different mathematical

subjects

• Wanted to explore the

mathematical foundations of

certain quantum formulas &

algorithms normally glossed

over in other classes
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Basics of Functional Analysis: Inner Product

Functional analysis takes linear algebra concepts and applies them

to infinite dimensions, where vectors essentially become functions.
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Basics of Functional Analysis: Inner Product

Functional analysis takes linear algebra concepts and applies them

to infinite dimensions, where vectors essentially become functions.

If X is a vector space in the complex field C, an inner product

(denoted 〈·, ·〉 or 〈·|·〉) for all α,β ∈ C and x , y , z ∈ X satisfies

the following:

• 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉
• 〈x ,αy + βz〉 = α〈x , y〉+ β〈x , z〉
• 〈x , x〉 ≥ 0

• 〈x , y〉 = 〈y , x〉
• 〈x , 0〉 = 〈0, y〉 = 0

• If 〈x , x〉 = 0, then x = 0

2



Basics of Functional Analysis: Inner Product

Functional analysis takes linear algebra concepts and applies them

to infinite dimensions, where vectors essentially become functions.

If X is a vector space in the complex field C, an inner product

(denoted 〈·, ·〉 or 〈·|·〉) for all α,β ∈ C and x , y , z ∈ X satisfies

the following:

• 〈αx + βy , z〉 = α〈x , z〉+ β〈y , z〉
• 〈x ,αy + βz〉 = α〈x , y〉+ β〈x , z〉
• 〈x , x〉 ≥ 0

• 〈x , y〉 = 〈y , x〉
• 〈x , 0〉 = 〈0, y〉 = 0

• If 〈x , x〉 = 0, then x = 0

The key thing to note is that these properties all apply to the dot

product for finite dimensions.
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Basics of Functional Analysis: Introducing L2

L2(I ) is the set of all functions f : C → C such that the integral of

|f |2 over I is finite.
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Basics of Functional Analysis: Introducing L2

L2(I ) is the set of all functions f : C → C such that the integral of

|f |2 over I is finite.

The inner product for f , g ∈ L2([a, b]) is

〈f , g〉 =
󰁝 b

a
f (x)g(x) dx
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Basics of Functional Analysis: Introducing L2

L2(I ) is the set of all functions f : C → C such that the integral of

|f |2 over I is finite.

The inner product for f , g ∈ L2([a, b]) is

〈f , g〉 =
󰁝 b

a
f (x)g(x) dx

We use L2 since it has a lot of nice mathematical and physical

properties, one of which is that it behaves a lot like Rn in infinite

dimensions.
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Schrödinger Equation: Infinite Square Well

The Schrödinger equation states that

i󰄁
∂Ψ

∂t
(t, x) = − 󰄁2

2m

∂2Ψ

∂x2
(t, x) + V (x)Ψ(t, x)

= HΨ(t, x)
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Schrödinger Equation: Infinite Square Well

The Schrödinger equation states that

i󰄁
∂Ψ

∂t
(t, x) = − 󰄁2

2m

∂2Ψ

∂x2
(t, x) + V (x)Ψ(t, x)

= HΨ(t, x)

If we assume that time is independent, i.e. Ψ(t, x) = ϕ(t)ψ(x),

then we can separate this equation and solve
󰀻
󰀿

󰀽
i󰄁ϕ′(t) = Eϕ(t)

Hψ(x) = Eψ(x)
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Schrödinger Equation: Infinite Square Well

The Schrödinger equation states that

i󰄁
∂Ψ

∂t
(t, x) = − 󰄁2

2m

∂2Ψ

∂x2
(t, x) + V (x)Ψ(t, x)

= HΨ(t, x)

If we assume that time is independent, i.e. Ψ(t, x) = ϕ(t)ψ(x),

then we can separate this equation and solve
󰀻
󰀿

󰀽
i󰄁ϕ′(t) = Eϕ(t)

Hψ(x) = Eψ(x)

The potential of the infinite square well is described by

V (x) =

󰀻
󰀿

󰀽
0 0 ≤ x ≤ a

∞ otherwise
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Schrödinger Equation: Infinite Square Well

We can let H : L2[0, a] → L2[0, a] with ψ(0) = ψ(a) = 0. In this

case, we know that H = − 󰄁2
2m∂xx in [0, a]. If we solve the ODE

− 󰄁2
2mψxx = Eψ, we find that the eigenvalues and eigenfunctions are

En =
n2π2󰄁2

2ma2
, ψn(x) =

󰁵
2

a
sin

󰀓nπ
a
x
󰀔

for n = 1, 2, 3, . . .
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Schrödinger Equation: Infinite Square Well

We can let H : L2[0, a] → L2[0, a] with ψ(0) = ψ(a) = 0. In this

case, we know that H = − 󰄁2
2m∂xx in [0, a]. If we solve the ODE

− 󰄁2
2mψxx = Eψ, we find that the eigenvalues and eigenfunctions are

En =
n2π2󰄁2

2ma2
, ψn(x) =

󰁵
2

a
sin

󰀓nπ
a
x
󰀔

for n = 1, 2, 3, . . .

These {ψn}∞n=1 form an orthonormal basis of L2[0, a], so

Ψ(t, x) =
∞󰁛

n=1

〈Ψ(0, ·),ψn〉e−i En󰄁 tψn(t)

Therefore, we have solved the Schrödinger equation for the infinite

square well case.
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Schrödinger Equation: Free Particle

Let’s now suppose that V (x) = 0. Our previous strategy was to

solve the ODE − 󰄁2
2mψxx = Eψ and find an orthonormal eigenbasis

{ψn} with eigenvalues {En} on L2([0, a]), so we could write a

solution as a linear combination.
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Schrödinger Equation: Free Particle

Let’s now suppose that V (x) = 0. Our previous strategy was to

solve the ODE − 󰄁2
2mψxx = Eψ and find an orthonormal eigenbasis

{ψn} with eigenvalues {En} on L2([0, a]), so we could write a

solution as a linear combination.

However, with no boundary, any E will work here. We want to

ultimately write

Ψ(t, x) =
∞󰁛

n=1

〈Ψ(0, ·),ψn〉e−i En󰄁 tψn(t)

but sum up an infinite, continuous En.
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Schrödinger Equation: Free Particle

Let’s now suppose that V (x) = 0. Our previous strategy was to

solve the ODE − 󰄁2
2mψxx = Eψ and find an orthonormal eigenbasis

{ψn} with eigenvalues {En} on L2([0, a]), so we could write a

solution as a linear combination.

However, with no boundary, any E will work here. We want to

ultimately write

Ψ(t, x) =
∞󰁛

n=1

〈Ψ(0, ·),ψn〉e−i En󰄁 tψn(t)

but sum up an infinite, continuous En.

How can we do this? We can use the continuous version of

summation =⇒ integration!
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Schrödinger Equation: Free Particle

Let f ∈ L2[0, 2π] and ek(x) =
1√
2π
e ikx , which can be thought of as

a period 2π
k “frequency”. We can see that

fn =

󰁝 2π

0
f (x)ek(x) dx =⇒ f (x) =

∞󰁛

n=0

fnen(x) =
∞󰁛

n=0

〈f , en〉en(x)
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Schrödinger Equation: Free Particle

Let f ∈ L2[0, 2π] and ek(x) =
1√
2π
e ikx , which can be thought of as

a period 2π
k “frequency”. We can see that

fn =

󰁝 2π

0
f (x)ek(x) dx =⇒ f (x) =

∞󰁛

n=0

fnen(x) =
∞󰁛

n=0

〈f , en〉en(x)

This is a very powerful tool. Over a bounded domain, can think of

〈f , ek〉 as the “amount” of f in the kth frequency.
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Schrödinger Equation: Free Particle

Let f ∈ L2[0, 2π] and ek(x) =
1√
2π
e ikx , which can be thought of as

a period 2π
k “frequency”. We can see that

fn =

󰁝 2π

0
f (x)ek(x) dx =⇒ f (x) =

∞󰁛

n=0

fnen(x) =
∞󰁛

n=0

〈f , en〉en(x)

This is a very powerful tool. Over a bounded domain, can think of

〈f , ek〉 as the “amount” of f in the kth frequency.

Let k =
√
2mE
󰄁 and φ(k) = 〈Ψ(0, ·), ek〉. We want to write over

infinite domain

Ψ(t, x) =
∞󰁛

k=−∞
φ(k)e−i 󰄁k

2

2m
t 1√

2π
e ikx
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Schrödinger Equation: Free Particle

Let f ∈ L2[0, 2π] and ek(x) =
1√
2π
e ikx , which can be thought of as

a period 2π
k “frequency”. We can see that

fn =

󰁝 2π

0
f (x)ek(x) dx =⇒ f (x) =

∞󰁛

n=0

fnen(x) =
∞󰁛

n=0

〈f , en〉en(x)

This is a very powerful tool. Over a bounded domain, can think of

〈f , ek〉 as the “amount” of f in the kth frequency.

Let k =
√
2mE
󰄁 and φ(k) = 〈Ψ(0, ·), ek〉. We want to write over

infinite domain

Ψ(t, x) =
∞󰁛

k=−∞
φ(k)e−i 󰄁k

2

2m
t 1√

2π
e ikx

Since k can be any real number, we write this as an integral:

Ψ(t, x) =
1√
2π

󰁝 ∞

−∞
φ(k)e i(kx−

󰄁
2m

k2t) dk
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Continuous Fourier Transform

The Fourier transform is defined as

󰁥f (ξ) = 1√
2π

󰁝 ∞

−∞
f (x)e−iξx dx for ξ ∈ R

󰁥f (ξ) is defined for L1(R), but can be easily extended into L2(R).
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Continuous Fourier Transform

The Fourier transform is defined as

󰁥f (ξ) = 1√
2π

󰁝 ∞

−∞
f (x)e−iξx dx for ξ ∈ R

󰁥f (ξ) is defined for L1(R), but can be easily extended into L2(R).

We can invert the Fourier transform very easily. With

F : L2(R) → L2(R), we have an inversion formula

f (x) = F−1(f̂ )(x) =
1√
2π

󰁝 ∞

−∞
󰁥f (ξ)e iξx dξ
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Continuous Fourier Transform

The Fourier transform is defined as

󰁥f (ξ) = 1√
2π

󰁝 ∞

−∞
f (x)e−iξx dx for ξ ∈ R

󰁥f (ξ) is defined for L1(R), but can be easily extended into L2(R).

We can invert the Fourier transform very easily. With

F : L2(R) → L2(R), we have an inversion formula

f (x) = F−1(f̂ )(x) =
1√
2π

󰁝 ∞

−∞
󰁥f (ξ)e iξx dξ

A few other nice properties:

• Maps derivatives to products: 󰁧f (n)(ξ) = (iξ)n󰁥f (ξ)
• Maps products to convolutions: F(fg)(ξ) = (󰁥f ∗ 󰁥g)(ξ)
• Maps convolutions to products: F(f ∗ g)(ξ) = 󰁥f (ξ)󰁥g(ξ)
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Discrete Fourier Transform

Given data (x0, x1, . . . , xN−1) ∈ CN−1, we want to form

(y0, y1, . . . , yN−1) ∈ CN−1 where yk = 1√
N

󰁓N−1
j=0 xjω

−jk
N and

ωN := e i
2π
N . This is a discrete variation of the Fourier transform we

just defined.
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Discrete Fourier Transform

Given data (x0, x1, . . . , xN−1) ∈ CN−1, we want to form

(y0, y1, . . . , yN−1) ∈ CN−1 where yk = 1√
N

󰁓N−1
j=0 xjω

−jk
N and

ωN := e i
2π
N . This is a discrete variation of the Fourier transform we

just defined.

In quantum computing, the inverse of this operation is known as

the quantum Fourier transform. If we have a quantum state

|x〉 =
󰁓N−1

j=0 xj |j〉, the QFT maps |x〉 󰀁→ |y〉 =
󰁓N−1

k=0 yk |k〉, where
yk = 1√

N

󰁓N−1
j=0 xjω

jk
N .

9



Discrete Fourier Transform

Given data (x0, x1, . . . , xN−1) ∈ CN−1, we want to form

(y0, y1, . . . , yN−1) ∈ CN−1 where yk = 1√
N

󰁓N−1
j=0 xjω

−jk
N and

ωN := e i
2π
N . This is a discrete variation of the Fourier transform we

just defined.

In quantum computing, the inverse of this operation is known as

the quantum Fourier transform. If we have a quantum state

|x〉 =
󰁓N−1

j=0 xj |j〉, the QFT maps |x〉 󰀁→ |y〉 =
󰁓N−1

k=0 yk |k〉, where
yk = 1√

N

󰁓N−1
j=0 xjω

jk
N .

The QFT can be thought of as a unitary matrix mapping

FN =
1√
N

󰀵

󰀹󰀹󰀹󰀹󰀷

1 1 1 · · · 1

1 ωN ω2
N · · · ωN−1

N
...

...
...

. . .
...

1 ωN−1
N ω

2(N−1)
N · · · ω

(N−1)(N−1)
N

󰀶

󰀺󰀺󰀺󰀺󰀸
9



Quantum Phase Estimation

It turns out that the QFT can be implemented efficiently on a

quantum computer. What kinds of problems can it solve?
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Quantum Phase Estimation

It turns out that the QFT can be implemented efficiently on a

quantum computer. What kinds of problems can it solve?

Let U be a unitary operator and |vθ〉 be an eigenvector of this

operator. The phase estimation algorithm approximates the

corresponding eigenvalue by approximating θ such that

U|vθ〉 = e iθ|vθ〉
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Quantum Phase Estimation

It turns out that the QFT can be implemented efficiently on a

quantum computer. What kinds of problems can it solve?

Let U be a unitary operator and |vθ〉 be an eigenvector of this

operator. The phase estimation algorithm approximates the

corresponding eigenvalue by approximating θ such that

U|vθ〉 = e iθ|vθ〉

Assume that θ = 2πj/2m for some integer j . Then, we know the

inverse QFT maps

1

2m/2

2m−1󰁛

k=0

e2πijk/2
m |k〉 󰀁→ |j〉
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Quantum Phase Estimation

It turns out that the QFT can be implemented efficiently on a

quantum computer. What kinds of problems can it solve?

Let U be a unitary operator and |vθ〉 be an eigenvector of this

operator. The phase estimation algorithm approximates the

corresponding eigenvalue by approximating θ such that

U|vθ〉 = e iθ|vθ〉

Assume that θ = 2πj/2m for some integer j . Then, we know the

inverse QFT maps

1

2m/2

2m−1󰁛

k=0

e2πijk/2
m |k〉 󰀁→ |j〉

In fact, regardless of the value of θ, the output |j〉 turns out to be

a very good approximation.
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Quantum Phase Estimation

To apply the algorithm, we start with an initial state |0m〉|vθ〉 (in
quantum computing, we omit most tensor symbols).
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Quantum Phase Estimation

To apply the algorithm, we start with an initial state |0m〉|vθ〉 (in
quantum computing, we omit most tensor symbols).

We then apply the Hadamard transform H⊗m, which is a discrete

Fourier transform in higher dimensions, and Uk to get

1

2m/2

2m−1󰁛

k=0

|k〉(Uk |vθ〉) =
1

2m/2

2m−1󰁛

k=0

e ikθ|k〉|vθ〉
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Quantum Phase Estimation

To apply the algorithm, we start with an initial state |0m〉|vθ〉 (in
quantum computing, we omit most tensor symbols).

We then apply the Hadamard transform H⊗m, which is a discrete

Fourier transform in higher dimensions, and Uk to get

1

2m/2

2m−1󰁛

k=0

|k〉(Uk |vθ〉) =
1

2m/2

2m−1󰁛

k=0

e ikθ|k〉|vθ〉

We then discard the |vθ〉 register. We can then simply apply the

inverse QFT to get an output |j〉 such that θ ≈ 2πj/2m.
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QPE Example

Given this real quantum output plot, what can we say about θ?

12



QPE Example

Given this real quantum output plot, what can we say about θ?

The largest |j〉 is |01011〉 = 11 so θ ≈ 22π/32. This is probably a

bit of an overestimation since |01010〉 is second largest.

12



QPE Example

Given this real quantum output plot, what can we say about θ?

The largest |j〉 is |01011〉 = 11 so θ ≈ 22π/32. This is probably a

bit of an overestimation since |01010〉 is second largest.

In fact, the actual θ = 2π/3. 12



Thank you for listening!

Let me know if you have any questions!
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