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Introduction

e Sophomore undergraduate
studying math and computer
science at Boston University

e Interested in quantum
computing and mechanics as
well as a multitude of
different mathematical
subjects

e Wanted to explore the
mathematical foundations of

certain quantum formulas &
algorithms normally glossed
over in other classes
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° (x,y) =y, x)

e (x,00=(0,y)=0

o If (x,x) =0, then x =0

The key thing to note is that these properties all apply to the dot
product for finite dimensions.
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Basics of Functional Analysis: Introducing L2

L2(1) is the set of all functions f : C — C such that the integral of

|£]2 over [ is finite.

The inner product for f,g € L%([a, b]) is

b
(Frg) = / ()8 (x) dx

We use L? since it has a lot of nice mathematical and physical
properties, one of which is that it behaves a lot like R" in infinite

dimensions.
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Schrodinger Equation: Infinite Square Well

The Schrodinger equation states that

2 52
/h%—\ltl(t,x) = 2h g u;(t x) + V(x)V(t, x)
= HV(t, x)

If we assume that time is independent, i.e. W(t,x) = p(t)y(x),
then we can separate this equation and solve

ihg'(t) = Eq(t)
Hip(x) = Ep(x)

The potential of the infinite square well is described by

0 0<x<a
V(x) =
oo otherwise
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case, we know that H = —% . in [0, a]. If we solve the ODE
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We can let H : L2]0, a] — L2[0, a] with 1(0) = ¢(a) = 0. In this
case, we know that H = —% . in [0, a]. If we solve the ODE
—%%« = E1), we find that the eigenvalues and eigenfunctions are

2, 252 )
E, = nﬂi7 Pn(x) = \/jsin (n—ﬂx) forn=1,2,3,...
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These {1/,}5; form an orthonormal basis of L2[0, a], so

o0

W(t,x) = 3(W(0, ), )™ n(t)

n=1

Therefore, we have solved the Schrodinger equation for the infinite
square well case.
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{4} with eigenvalues {E,} on L2([0, a]), so we could write a
solution as a linear combination.
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Let's now suppose that V(x) = 0. Our previous strategy was to
solve the ODE —%d)xx = E) and find an orthonormal eigenbasis
{4} with eigenvalues {E,} on L2([0, a]), so we could write a
solution as a linear combination.

However, with no boundary, any E will work here. We want to
ultimately write

(e.°]

W(t,x) = S (W(0, ), n)e ™ 7 Eubu(t)

n=1
but sum up an infinite, continuous Ej.

How can we do this? We can use the continuous version of

summation = integration!
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Schrodinger Equation: Free Particle

Let f € L2[0,27] and ex(x) = \/%e"kx, which can be thought of as

a period 27” “frequency”. We can see that

f,,:/o%f() k(x) dx = f(x Zfe,, —ife,,>e,,(x)
n=0

This is a very powerful tool. Over a bounded domain, can think of
(f,ex) as the “amount” of f in the kth frequency.
Let k = ¥2mE and ¢(k) = (W(0,-), ex). We want to write over

infinite domaln

TOHEDS ¢>(k)e'sz\/%e"kx

Since k can be any real number, we write this as an integral:

W(t, x) = \/%/ (k) e o2k g
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Continuous Fourier Transform

The Fourier transform is defined as
~ 1 00 .
f(§) = — f(x)e " dx for £ € R
©=—=/ ;
F(€) is defined for L1(R), but can be easily extended into L2(R).

We can invert the Fourier transform very easily. With
F : L2(R) — L?(R), we have an inversion formula

00 = F P = <= / £)e de

A few other nice properties:

e Maps derivatives to products: ﬁ(f) = (ig)"f(g)
e Maps products to convolutions: F(fg)(&) (f* 2)(6)
e Maps convolutions to products: F(f x g)(& ?(g)g(g)

N—r
I
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Discrete Fourier Transform

Given data (xg,x1,...,xy—1) € CN71, we want to form

ik
(.y07.y1)°"a.yN 1) € (CN ! where Yk = fZJ 0 X.IWNJ
Wy = ei N,
just defined.

and

This is a discrete variation of the Fourier transform we

In quantum computing, the inverse of this operation is known as
the quantum Fourier transform. If we have a quantum state

|x) = ZJ _0 XJU) the QFT maps |x) — |y) = Zk 0 yk\k), where
= L S N-L K
Yk \/N jZO XjWl -

The QFT can be thought of as a unitary matrix mapping

1 1 1 e 1
- 1 |1 wpy w,zv w;\\; !
N= =
VN : : . :
1 wx,l lev(N_l) o wg\,N_l)(N_l)
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Quantum Phase Estimation

It turns out that the QFT can be implemented efficiently on a
quantum computer. What kinds of problems can it solve?

Let U be a unitary operator and |vy) be an eigenvector of this
operator. The phase estimation algorithm approximates the
corresponding eigenvalue by approximating 6 such that

Ulvg) = ”|wp)

Assume that 6 = 27 /2™ for some integer j. Then, we know the

inverse QFT maps

om

o 3 EE

In fact, regardless of the value of 6, the output |j) turns out to be
a very good approximation.
10
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To apply the algorithm, we start with an initial state |0™)|vy) (in
quantum computing, we omit most tensor symbols).
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Quantum Phase Estimation

To apply the algorithm, we start with an initial state |0™)|vy) (in
quantum computing, we omit most tensor symbols).

We then apply the Hadamard transform H®™, which is a discrete
Fourier transform in higher dimensions, and U* to get

om— 1
1 1
2m/2 Z |k Uk|V9 2m/2 Z kg‘k ’Vg

We then discard the |vy) register. We can then simply apply the
inverse QFT to get an output |j) such that 6 ~ 27;/2™.

11
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The largest |j) is |[01011) = 11 so 6 ~ 227 /32. This is probably a

bit of an overestimation since |01010) is second largest.
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bit of an overestimation since |01010) is second largest.
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In fact, the actual § = 27/3.



Thank you for listening!

Let me know if you have any questions!
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